WPC Tomorrow’s Leaders Symposium 2015

«New Russian technologies in the field of refining and petrochemistry»

Vice-rector, Prof. Mikhail A. Silin
The main directions of development of oil refining and petrochemistry in Russia

1. Increasing the depth of refining
2. Improving the environmental performance of the fuels (Euro-5)
3. Processing of associated petroleum gas and methane
4. Processing of heavy raw material
5. Development of new processes and catalysts
Increasing the depth of processing
Hydroconversion of heavy residues at the nanoscale catalysts

Developers: TIPS RAS, IPCP RAS and IMET URO RAN

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Hydroconversion INHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions of process:</td>
<td></td>
</tr>
<tr>
<td>- pressure, MPa</td>
<td>7.0-8.0</td>
</tr>
<tr>
<td>- temperature, °C</td>
<td>440-450</td>
</tr>
<tr>
<td>Conversion, % mass</td>
<td>95.0</td>
</tr>
<tr>
<td>Amount of catalyst, % mass</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Information of TIPS RAS

Implementation:
- JSC «Transneft» - 50 th. T/y (it was developed a basic project)

Will be implemented:
- JSC «Gazprom» (Astrakhan) – 800 th. T/y
- JSC «Gazpromneft» (Moscow) – 2.0 million T/y
- JSC «Ilskiy Refinery»
Catalytic cracking of vacuum gasoil (JSC «TAIF-NK»)

Developers: TIPS RAS, JSC «VNIPIneft», JSC «VNIINP»

The main advantages of the technology:

- Flexible processing of vacuum gasoil
- During the processing according to petrol variant:
 - The yield of gasoline end boiling point of 205 °C - 56% by weight.
 - The total yield of propane-propylene and butane-butylene fraction, gasoline and light gasoil - 87.5% by weight.
 - Octane number determined by analytical method - 94.2
 - Consumption of fresh catalyst, - at least 0.5 kg / ton. of raw materials
Advantages of the technology:

- The technology does not use water and water vapor, which prevents the formation of effluents
- Continuous running of the installation is not less than 1 year
- Option with the reaction chamber requires lower capital and operating expenses
- Best distillate compared to thermal cracking and delayed coking (minimal content of aromatic and unsaturated hydrocarbons)
Hydrocracking with increased yields of diesel fuel by aluminosilicate catalysts

Process conditions: 410 °C; 10,0 MPa; 0,73 hour⁻¹; H₂/ feedstock 1130 nm³/m³

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Conversion GED, %</th>
<th>Output of diesel fuel, %</th>
<th>S at residue, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИК</td>
<td>82,0</td>
<td>67,5</td>
<td>50</td>
</tr>
<tr>
<td>Imported</td>
<td>75,5</td>
<td>61,5</td>
<td>60</td>
</tr>
<tr>
<td>Russian</td>
<td>67,0</td>
<td>53,0</td>
<td>70</td>
</tr>
</tbody>
</table>
Improving the environmental performance of the fuels (Euro-5)
Combination of heterogeneous-catalyzed reaction with simultaneously conducted distilling or fractionating on catalyst layer.

Catalyst in size from 0.25 to 1 mm contains in porous tanks like canvas tank, wire-mesh sections or polymer fabrics. Hydrocracking with increased outcrop of diesel gasoil on silica-alumina catalyst.

The main developers: BASF, Katalitik distilleyshn Technologies, Research & Chemical Company laysensing, CD-tech, PRIS.
Isomerization technology of light gasoline fractions

Developer: JSC «SIE Neftehim»

Key benefits:
- High-activity catalyst in resistance to S, N, H₂O
- Does not require a supply for an acid component
- Low chemical consumption of hydrogen
- Full recoverability of the catalyst after regeneration
- Catalyst life – 10 years
- Cycle length – 3 years

Catalysts: CI-2; Pt + ZrO₂ + SO₄²⁻

Implementation:
- JSC "Slavneft-Yaroslavnefteorgsintez"
- JSC "Gazpromneft-Omsk Refinery"
- JSC "LUKOIL Ukhtaneftepererabotka"
- JSC "Petrotel-LUKOIL"
- JSC "Novoil"
- JSC "Linnik"
- JSC "Ufaneftekhim"
Hydrodeparaffinization results of different types of raw materials on the catalyst SGK-1

I - kerosine fraction, II - diesel fraction, III - gasoil of catalytic cracking

<table>
<thead>
<tr>
<th>Показатели</th>
<th>I (сырьё)</th>
<th>гидрогенизат</th>
<th>II (сырьё)</th>
<th>гидрогенизат</th>
<th>III (сырьё)</th>
<th>гидрогенизат</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура процесса, °C</td>
<td>315</td>
<td></td>
<td>320</td>
<td></td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Фракционный состав, °C:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- н.к.</td>
<td>168</td>
<td>167</td>
<td>195</td>
<td>163</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>- 10%</td>
<td>180</td>
<td>205</td>
<td>230</td>
<td>209</td>
<td>146</td>
<td>191</td>
</tr>
<tr>
<td>- 50%</td>
<td>215</td>
<td>218</td>
<td>278</td>
<td>275</td>
<td>240</td>
<td>229</td>
</tr>
<tr>
<td>- 90%</td>
<td>261</td>
<td>261</td>
<td>335</td>
<td>337</td>
<td>293</td>
<td>230</td>
</tr>
<tr>
<td>- 98%</td>
<td>282</td>
<td>285</td>
<td>359</td>
<td>346</td>
<td>323</td>
<td>316</td>
</tr>
<tr>
<td>Содержание н-алканов, %</td>
<td>21,0</td>
<td></td>
<td>17,0</td>
<td>2,5</td>
<td>8,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Температура, °C:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- застывания</td>
<td>-</td>
<td></td>
<td>-12</td>
<td>-50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- кристаллизации</td>
<td>-36</td>
<td>-60</td>
<td>-</td>
<td>-</td>
<td>-3</td>
<td>-60</td>
</tr>
<tr>
<td>Выход, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- C₁–C₄</td>
<td>-</td>
<td>5,8</td>
<td>-</td>
<td>5,5</td>
<td>-</td>
<td>4,0</td>
</tr>
<tr>
<td>- C₅–160°C</td>
<td>-</td>
<td>18,2</td>
<td>-</td>
<td>10,6</td>
<td>-</td>
<td>8,5</td>
</tr>
<tr>
<td>- фракции 160°C – к.к.</td>
<td>-</td>
<td>74,2</td>
<td>-</td>
<td>82,5</td>
<td>-</td>
<td>86,5</td>
</tr>
<tr>
<td>Потери, %</td>
<td>-</td>
<td>1,5</td>
<td>-</td>
<td>1,4</td>
<td>-</td>
<td>1,0</td>
</tr>
</tbody>
</table>

P – 4,0 MPa, Vc – 1,0 hours⁻¹
The main advantages of the technology:

- Improving the quality of marketable products:
 - Obtaining hydrocarbonated gasoline fraction of catalytic cracking with sulfur content not exceeding 100 ppm
 - Reduction of up to 30 ppm of hydrogen sulfide (H2S) and sour sulfur to 0.002% by weight to obtain fractions of PPF and BBF
- Reduction of harmful impacts on the environment
- Creation of possibilities for increasing the capacity of the enterprise.
Processing of associated petroleum gas and methane
Oxidative condensation of methane (IGIC, Gubkin University, TIPS)

2 CH₄ → O₂, N₂O, [O]₅

C₂H₄ + 2 H₂O

C₂H₄, C₂H₆ – base products
H₂; CO; CO₂; H₂O – co-products

Parameters of converting methane

<table>
<thead>
<tr>
<th></th>
<th>In the world</th>
<th>In Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane conversion, %</td>
<td>20-37</td>
<td>50</td>
</tr>
<tr>
<td>Products output C₂+, %</td>
<td>16 (26*)</td>
<td>30</td>
</tr>
</tbody>
</table>

Oxidative condensation of methane:

Initial mixture (NG*+O₂) → Steam → Crude ethylene → CO₂

Recycle of the processing unit

To refining
Processes of producing olefins from natural gas (TIPS RAS, IPCP RAS)

- **Natural Gas** → **Synthetic gas**
 - Production of methanol
 - UOP (USA), TIPS RAS, IPCP RAS
 - Production of DME
 - TIPS RAS, IPCP RAS
 - Synthesis of olefins in a fluidized bed
 - SAPO-34/18
 - Synthesis of olefins in a stationary bed
 - ZSM-5

- **Production of methanol**
 - Ethylene (34-49%) → Propylene (26-44%)

- **Production of DME**
 - Ethylene (< 40%) → Propylene (< 45%)
<table>
<thead>
<tr>
<th>Process</th>
<th>Conversion</th>
<th>Step of olefin synthesis</th>
<th>C2-C4 olefins, %</th>
<th>Selectivity</th>
<th>Possible other products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Catalyst</td>
<td>T,°C</td>
<td>%</td>
<td>C2=</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>70</td>
<td>-</td>
<td>1000</td>
<td>>99</td>
<td>47</td>
</tr>
<tr>
<td>Mobil</td>
<td>50-70</td>
<td>ZSM-5</td>
<td>350-400</td>
<td>47-75</td>
<td>26-56</td>
</tr>
<tr>
<td>UOP/Norsk-hydro</td>
<td>70</td>
<td>SAPO-34</td>
<td>450</td>
<td><100</td>
<td>75-90</td>
</tr>
<tr>
<td>Lurgi (DME)</td>
<td>70</td>
<td>ZSM-5</td>
<td>430-450</td>
<td>99</td>
<td>>69</td>
</tr>
<tr>
<td>Van Dijk (DME)</td>
<td>-</td>
<td>SAPO-34</td>
<td>450</td>
<td>70</td>
<td>49</td>
</tr>
<tr>
<td>DME из SG INHS; IPHF</td>
<td>>80</td>
<td>ZSM-5</td>
<td>340-450</td>
<td>95-100</td>
<td>80-88</td>
</tr>
</tbody>
</table>
TIPS RAS process for producing liquid hydrocarbon mixtures according to Fischer-Tropsch

C10-C20, catalyst

100 Fe:3K2O:8Al2O3

Synthetic gas

CO conversion 90%
C5+ selectivity 70%
CH4 selectivity < 5%
Development of new processes and catalysts
Alkylation on solid catalysts

- The TIPS Russian Academy of Sciences developed the alkylation process on a solid catalyst, which has been tested on the pilot industrial plant:
 - fixed bed of zeolite catalyst TTSM-38
 - Average temperature of 40 - 100 °C
 - Pressure of 1.0 - 1.7 MPa
 - Catalyst consumption of 0.2 - 0.3 kg / t alkylbenzene
 - Octane alkylate target 96 - 98 (AMI)
 - Time of the catalyst without regeneration up to 48 hours
 - Regeneration is carried out in a hydrogen stream
BIC SB RAS technology of hydrotreatment catalyst activity restoration

Degree of hydodesulfurization, %

- Fresh catalyst
- Deactivated catalyst
- Oxidative regeneration
- After regeneration
- Activation
- After activation

- 99.9%
- 97.0%
- 98.5%
- 99.9%
- 10 ppm S
- 300 ppm S
- 10 ppm S
New industrial reforming catalyst

Institute of Hydrocarbon Processing SB RAS (Omsk) and JSC "NPP Neftehim" (Krasnodar), created a new reforming catalyst PR-81.

PR-81 - trimetallic catalyst which provides enhanced stability while maintaining activity and selectivity of their predecessors.

Key indicators in reforming francs. 85-1800S to produce gasoline with RON 95

<table>
<thead>
<tr>
<th></th>
<th>Average level in Europe</th>
<th>PR-51, 71</th>
<th>PR-81</th>
</tr>
</thead>
<tbody>
<tr>
<td>The yield of reformate, % mass.</td>
<td>82-85</td>
<td>86-88</td>
<td>90</td>
</tr>
<tr>
<td>The yield of hydrogen, % mass.</td>
<td>1,6-2,0</td>
<td>2,4-2,6</td>
<td>2,8</td>
</tr>
<tr>
<td>The hydrogen concentration in WASH% vol.</td>
<td>73-80</td>
<td>83-86</td>
<td>86</td>
</tr>
<tr>
<td>Average integral temperature °C</td>
<td>480</td>
<td>470</td>
<td>465</td>
</tr>
<tr>
<td>The octane number, RON</td>
<td>95-98</td>
<td>95-98</td>
<td>98-100</td>
</tr>
</tbody>
</table>

Data: IPPU SB RAS
Thank you for your attention!

Vice-rector Mikhail A. Silin
Silin.m@gubkin.ru